Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries
نویسندگان
چکیده
Li2S has a high theoretical capacity of 1166 mAh g(-1), but it suffers from limited rate and cycling performance. Herein we reported in-situ synthesis of thermally exfoliated graphene-Li2S (in-situ TG-Li2S) nanocomposite and its application as a superior cathode material alternative to sulfur. Li2S nanoparticles with the size of ~8.5 nm homogeneously anchored in graphene nanosheets were prepared via chemical reduction of pre-sublimed sulfur by lithium triethylborohydride (LiEt3BH). The in-situ TG-Li2S nanocomposite exhibited an initial capacity of 1119 mAh g(-1) Li2S (1609 mAh g(-1) S) with a negligible charged potential barrier in the first cycle. The discharge capacity retained 791 mAh g(-1) Li2S (1137 mAh g(-1) S) after 100 cycles at 0.1C and exceeded 560 mAh g(-1) Li2S (805 mAh g(-1) S) at a high rate of 2C. Moreover, coupling the composite with Si thin film anode, a Li2S/Si full cell was produced, delivering a high specific capacity of ~900 mAh g(-1) Li2S (1294 mAh g(-1) S). The outstanding electrode performance of in-situ TG-Li2S composite was attributed to the well dispersed small Li2S nanoparticles and highly conductive graphene nanosheets, which provided merits of facile ionic and electronic transport, efficient utilization of the active material, and flexible accommodation of volume change.
منابع مشابه
Li3VO4 anchored graphene nanosheets for long-life and high-rate lithium-ion batteries.
Li3VO4 nanoparticles embedded in graphene nanosheets (Li3VO4@GNS) were obtained using a sol-gel method. The composite presents excellent high-rate performance with a stable capacity of 133 mA h g(-1) at 50 C and long-life performance with a capacity retention rate of 63.1% after 5000 cycles at 5 C.
متن کاملUltrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries
Coupling ultrasmall Fe2O3 particles (~4.0 nm) with the MoS2 nanosheets is achieved by a facile method for high-performance anode material for Li-ion battery. MoS2 nanosheets in the composite can serve as scaffolds, efficiently buffering the large volume change of Fe2O3 during charge/discharge process, whereas the ultrasmall Fe2O3 nanoparticles mainly provide the specific capacity. Due to bigger...
متن کاملAnchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries
A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG), is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries...
متن کاملFacile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries.
A SnO2/graphene nanocomposite was prepared via a facile solvothermal process using stannous octoate as a Sn source. The as-prepared SnO2/graphene nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, a long cycle life and a good rate capability when used as an anode material for lithium-ion batteries.
متن کاملGraphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries
SnO2 nanoparticles were dispersed on graphene nanosheets through a solvothermal approach using ethylene glycol as the solvent. The uniform distribution of SnO2 nanoparticles on graphene nanosheets has been confirmed by scanning electron microscopy and transmission electron microscopy. The particle size of SnO2 was determined to be around 5 nm. The as-synthesized SnO2/graphene nanocomposite exhi...
متن کامل